On Tech

Tag: API Examples

Application pattern: API Examples

API Examples enable consumer unit testing of producer APIs

When an application consumes data from a remote service, we wish to verify the correctness of consumer-producer interactions via a testing strategy that encompasses the following characteristics:

  • Fast feedback
  • 100% scenario coverage
  • Representative test data
  • Auto-detect API changes

The simplest method of verifying parser behaviour would be to use Test Driven Development and create a suite of unit tests reliant upon self-generated test data. These tests could provide feedback in milliseconds, and would be able to cover all happy/sad path scenarios. However, consumer ownership of test data increases the probability of errors as highlighted by Brandon Byars warning that “hard-coding assumptions about data available at the time of the test can be a fragile approach“, and it leaves the consumer entirely unaware of API changes when a new producer version is released.

Consumer Producer Unit Testing

To address these concerns, we could write some integration tests to trigger interactions between running instances of the producer and consumer applications to implicitly test parser behaviour. This could encourage the use of representative test data and warn the consumer of producer API changes, but the increase in run time from milliseconds to minutes would result in significant feedback delays and a corresponding reduction in scenario coverage. Given JB Rainsberger’s oft-quoted assertion that “integrated tests are a scam… you write integrated tests because you can’t write perfect unit tests“, it seems prudent to explore how we might equip our unit testing strategy with representative test data and an awareness of API changes.

Consumer Producer Integration Testing

API Examples is an application pattern originally devised by Daniel Worthingon-Bodart, in which a new version of a producer application is accompanied by a sibling artifact that solely contains example API requests and example API responses. These example files should be raw textual data recorded from the acceptance tests of the producer application, meaning that all happy/sad path scenarios known to the producer become freely available for unit testing within the consumer commit build without any binary dependencies or feedback delays. This approach satisfies Brandon’s recommendation that “each service publish a cohesive set of golden test data that it guarantees to be stable“, and when combined with a regular update policy ensures new versions of the consumer application will have  early warning of API changes.

Consumer Producer API Examples

As API Examples are exercised within the consumer commit build, they can warn a new consumer version of an API change but cannot warn an existing consumer version already in production. The solution to this problem is for the consumer to derive its parser behaviour from the API Examples and publish it as a Consumer Driven Contract – a testable specification embedded within the producer commit build to document how the consumer uses the API and to immediately warn the producer if an API change will harm a consumer.

Consumer Producer Examples and Contracts

Application antipattern: Serialisation

Serialisation increases batch size and cycle time

When designing applications for Continuous Delivery, our goal is to grow an architecture that minimises batch size and facilitates a low cycle time. However, architectural decisions are often local optimisations that value efficiency over effectiveness and compromise our ability to rapidly release software, and a good example is the use of object serialisation and pseudo-serialisation between consumer/producer applications.

Object serialisation occurs when the producer implementation of an API is serialised across the wire and reused by the consumer application. This approach is promoted by binary web services such as Hessian.

Object Serialisation

Pseudo-serialisation occurs when the producer implementation of an abstraction encapsulating the API is reused by the consumer application. This approach often involves auto-generating code from a schema and is promoted by tools such as JAXB and WSDL Binding.

Pseudo Serialisation

Both object serialisation and pseudo-serialisation impede quality by creating a consumer/producer binary dependency that significantly increases the probability of runtime communication failures. When a consumer is dependent upon a producer implementation of an API, even a minor syntax change in the producer can cause runtime incompatibilities with the unchanged consumer. As observed by Ian Cartwright, serialising objects over the wire means “we’ve coupled our components together as tightly as if we’d just done RPC“.

A common solution to combat this increased risk of failure is to couple consumer/producer versioning, so that both applications are always released at the same version and at the same point in time. This strategy is enormously detrimental to Continuous Delivery as it inflates batch size and cycle time, with larger change sets per release resulting in an increased transaction cost, an increased risk of release failure, and an increased potential for undesirable behaviours.

Producer Consumer Versions

For example, when a feature is in development and our counterpart application is unchanged it must still be released simultaneously. This overproduction of application artifacts increases the amount of inventory waste in our value stream.

Wasteful Versions

Alternatively, when a feature is in development and our counterpart application is also in development, the release of our feature will be blocked until the counterpart is ready. This delays customer feedback and increases our holding costs, which could have a considerable economic impact if our new feature is expected to drive revenue growth.

Blocked Versions

The solution to this antipattern is to understand that an API is a contract not an object, and document-centric messaging is consequently a far more effective method of continuously delivering distributed applications. By communicating context-neutral documents between consumer and producer, we eliminate shared code artifacts and allow our applications to be released independently.

While document-centric messaging reduces the risk of runtime incompatibilities, a new producer version could still introduce an API change that would adversely affect one or more consumers. We can protect consumer applications by implementing the Tolerant Reader pattern and leniently parsing a minimal amount of information from the API, but the producer remains unaware of consumer usage patterns and as a result any incompatibility will remain undetected until integration testing at the earliest.

A more holistic approach is the use of Consumer Driven Contracts, where each consumer supplies the producer with a testable specification defining its expectations of a conversation. Each contract self-documents consumer/producer interactions and can be plugged into the producer commit build to assert it remains unaffected by different producer versions. When a change in the producer codebase introduces an API incompatibility, it can be identified and assessed for consumer impact before the new producer version is even created.

By using document-centric messaging and Consumer Driven Contracts, we can continuously deliver distributed applications with a low batch size and a correspondingly low cycle time. The impact of architectural decisions upon Continuous Delivery should not be under-estimated.

© 2025 Steve Smith

Theme by Anders NorénUp ↑